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and non-steadiness of natural deformations 
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Abstract- -An investigation on vorticity in general heterogeneous and non-steady flows is presented. The bulk 
vorticity of a flow is solely determined by the imposed boundary conditions and it exerts no constraints on local 
flow. The distribution of bulk vorticity in different rheological domains and the partitioning of the distributed 
vorticity into shear-induced vorticity and spin are both time dependent. This indicates that heterogeneous flows 
are inevitably non-steady. In a quantitative example, it is demonstrated that even though the imposed boundary 
movement is a constant simple shear, local flow can be non-steady, spinning and non-coaxial. Super-simple shear 
flow with internal kinematic vorticity number greater than 1 occurs, but the finite strain does not necessarily 
pulsate. The geological implications of this investigation are discussed. The significance of heterogeneity and 
non-steadiness in natural deformations are emphasized. It is concluded that vorticity distribution and partition- 
ing is the link between different scale structures. The internal kinematic vorticity number is not a criterion of 
finite strain oscillation. 

INTRODUCTION 

ALTHOUGH it is common knowledge for structural 
geologists that natural deformations are generally 
heterogeneous and non-steady, simple and unique 
relationships between bulk and local strains (and for 
finite and instantaneous strains) in the idealized flows 
studied by, for example, Ramsay & Graham (1970), 
Elliott (1972), Ramberg (1975), Ramsay (1980), Ram- 
say & Huber (1983) are often implicitly or explicitly 
assumed in the study of natural deformation. To directly 
relate a hand specimen or even thin-section-scale shear- 
sense indicator to the bulk kinematics is an example. 
However, many geologists have provided evidence to 
challenge this practice. For example, Mitra (1976, 1978) 
has shown that the finite strain may be independent of 
the instantaneous strain rate. He defined a parameter 
called strain activity to measure the time-averaged in- 
stantaneous strain rate. Williams & Schoneveld (1981) 
concluded that garnet rotation is not related to the bulk 
strain path but only related to the movement of the 
'particles' in contact with it. Lister & Williams (1979, 
1983) have theoretically shown and provided observed 
evidence to emphasize that local flow may deviate sig- 
nificantly from bulk flow. Celma (1982) has shown that 
even at the scale of a thin-section, domains in which a 
fabric study gives an opposite sense of shear to that 
deduced from other field evidence may be found to 
coexist with domains in which the fabric is in agreement 
with the regional sense of shear. From the asymmetric 
quartz fabric in their shear zones, Platt & Behrmann 
(1986) also concluded that large volumes of rocks in 
shear zones may deform nearly coaxially and fail to 
reflect the bulk sense of shear. These examples all 
suggest the heterogeneous and time-dependent distri- 
bution of strain rates and vorticity in deformation his- 
tory. Heterogeneous distribution of strain rates is well 

reflected by the finite strain variation in deformed rocks. 
In order to understand the deformation path, we are 
concerned not so much about the strain rates as about 
the non-coaxiality of the flow, sense of shear and 
whether reverse sense of shear has ever occurred. In 
such a case, vorticity analysis is very important. While 
many aspects of vorticity and their geological impli- 
cations have been studied (Means et al. 1980, Lister & 
Williams 1983, Passchier 1986, 1-990), a treatment of 
vorticity in general heterogeneous and non-steady flows 
is still absent. This paper serves to fill this vacancy. It will 
show what determines the bulk vorticity, how the bulk 
vorticity is distributed in different domains, how the 
distributed vorticity can be partitioned, and why the 
distribution and partitioning of vorticity are important in 
the study of natural deformation. Since an infinite var- 
iety of heterogeneous and non-steady flow examples can 
be considered, this paper will attempt to elucidate some 
general principles. 

DESCRIPTION OF FLOW 

A flow is totally defined if the velocity of all particles 
at any time is defined. The velocity can be expressed 
either in terms of particle (X)--Lagrangian or material 
velocity---or in terms of spatial location (x)--Eulerian or 
spatial velocity (Ottino 1989), i.e.: 

v = v(X, t) Lagrangian or material 

v = v(x, t) Eulerian or spatial. 

The material derivative of v, Dv/Dt--the acceleration 
of particle X--is related to the spatial derivative of v, 
Ov/Ot--the change of velocity at the spatial location x--  
as (ibid.): 
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Dv 0v 
Dt Ot 
- - -  - -  + L "v,  ( 1 )  

where L is the Eulerian velocity gradient tensor whose 
components are: 

L q -  Ovi ( i , j = 1 , 2 , 3 ) .  (2) 
Oxj 

To distinguish Lagrangian velocity from Eulerian ve- 
locity is important in the subsequent establishment of 
the 'principle of bulk vorticity determination'. If Dv/Dt 
= 0, the flow is rigid-body translation, whereas Ov/Ot = 0 
means that the flow is steady. However at flow bound- 
aries Dv/Dt = 0 means the boundary movement con- 
dition does not change with time. This may be common. 

A flow is equally defined if the deformation history-- 
the deformation gradient tensor F(t)---at any time is 
defined. F(t) and L(t) are related as (Truesdel11965, pp. 
19-20): 

L(t) = F(t)V-1(t). (3) 

L can be decomposed into a symmetric stretching 
tensor D and an antisymmetric vorticity tensor W 
(Truesdell 1965, Means et al. 1980): 

L = O + W. (4) 

Vorticity tensor can be expressed in terms of the 
vorticity vector (see Means et al. 1980, Passchier 1986). 
In this paper the vector notation of vorticity is used. 

If L does not vary from point to point, the flow is 
homogeneous, otherwise it is heterogeneous. In the case 
of heterogeneous flow, the variation of vorticity in space 
is called distribution in this paper. If L does not change 
with time, the flow is steady, otherwise it is non-steady. 

A dimensionless magnitude--kinematic vorticity 
number--was defined by Truesdell (1954) as: 

S~a~ -I /2 W k = W ' { 2 ( s  2 + s ~ +  3,J , (5) 

where W is the vorticity, and Sa, s2, s3, are the principal 
instantaneous stretching rates. Wk = 0 corresponds to 
purely irrotational flow and Wk = ~ corresponds to 
purely rotational flow (Truesdell 1954). 

It was recognized by Means et al. (1980) and Lister & 
Williams (1983) that vorticity can be partitioned into a 
frame-independent 'internal' or shear-induced vorticity 
(rotation of material lines with respect to the instan- 
taneous stretching axis) and a frame-dependent 'exter- 
nal' vorticity or spin (rotation of the instantaneous 
stretching axis with respect to the external frame), i.e.: 

W = SIV + spin. 

The internal kinematic vorticity number defined by 
Means et al. (1980) as 

WE = SIV- {2(s 2 + s 2 + s2)} -1/2 (6) 

is a measure of the degree of instantaneous non- 
coaxiality. W~, = 0 is the only type of coaxial flow; 0 < 
WE < 1 the flow is sub-simple shear; W[, = 1 is simple 
shear and W~, > 1 is super-simple shear. 

f C DEFORMATION~~ 
A ~  

Fig. 1. A deformation area S with C as its boundary. Boundary 
conditions defined by fc  v • dx determines the vorticity flux through S 
and thus establish the bulk vorticity of the deformation (equation 11). 
In the process of deformation S and C may change. The change of bulk 

vorticity is described by equation (12). See text for detail. 

T H E  D E T E R M I N A T I O N  O F  B U L K  V O R T I C I T Y  

Mathematically, vorticity vector is the curl of the 
velocity field defined as: 

vdx 

W = c u r l v = l i m  c 

s-.o I dS 
s 

= i O +Jox--~2 

According to Stokes's curl theorem: 

I c u r l v d S = ~  vdx, (8) 
s c 

where S is any area that has C as its boundary, the 
left-hand side being the vorticity flux of the area S and 
the right-hand side being the circulation of v along C, the 
instantaneous average vorticity through the area S is: 

W = ~  s l  c u r l v d S = ~  cVdX' (9) 

where S is the area of S. 
Since (8) holds for any loop C, choosing a particular C 

which is exactly the material boundary of the flow (Fig. 
1), the whole vorticity flux of the flow is: 

I W d S = ~  vdx. (10) 
s c 

The bulk vorticity (Wb) of the flow is thus: 

w b = l ~  vdx. (11) 
C 

where S is the whole area and C is the material boundary 
of the flow. As flow advances, the area S and the 
boundary C vary with time. The variation of Wb with 
respect to time is (see Appendix A): 

dW b 1~ (Dv OlnSv/dx" (12) 
dt = -S c " ~  Ot ] 

The terms on the right-hand sides of equations (11) and 
(12) are all boundary movement conditions. Therefore: 
the bulk voracity o f  a f low is solely determined by the 
imposed boundary movements; its change with time is 
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dependent only on the boundary movement and bulk area 
changes; bulk vorticity is independent of  the way in which 
the deformation is accommodated. Since this states the 
relationship between local flow and bulk flow, I wish to 
call it the principle of  bulk vorticity determination. 

If Dv/Dt = 0 along C, by solving (12) incorporating 
(11) we have (see Appendix A): 

WbS = constant. (13) 

It means if boundary movement remains unchanged, the 
bulk vorticity flux is conserved. 

h 

Fig. 3. In a shear zone, before the initiation of drag fold, the bulk 
vorticity is distributed in incompetent domains, while the competent 
layer has nearly no vorticity. When drag fold is initiated, the bulk and 
vorticity is redistributed. The competent layer takes up some vorticity 
the vorticity in the incompetent matrix is correspondingly reduced. 

The distribution of vorticity changes with time. See text for detail. 

THE DISTRIBUTION OF V O R T I C I T Y  IN 
H E T E R O G E N E O U S  F L O W  

In homogeneous flow, the vorticity is uniformly dis- 
tributed. The vorticity at any point of the flow equals the 
bulk vorticity. 

When the material of the flow is rheologically hetero- 
geneous, the vorticity varies in space. However ,  as is the 
common practice in structural geology, the flow can be 
divided into many approximately homogeneous 
domains. In each domain, the vorticity can be approxi- 
mately viewed as uniform. Therefore a heterogeneous 
area S is divided into n subareas $1, $2, $3, • • •, Sn (Fig. 
2). The bulk vorticity is: 

Wb =1 W O S = ~  
S S~ 

W d S +  f W d S +  
S~ 

j W d S + . - . +  W d S  
S3 S~ 

"=- S ( S 1 W l  nt- 3 2 W 2  4- S 3 W  3 4- • • • 4- S n W n )  , (14) 

where S i and Wi are the area and the average vorticity of 
the ith domain respectively, and Wi=I/S i fc~v • dx, 
where Ci is the boundary of the ith domain. Equation 
(14) may be written as 

W = ~ ,~iWi, (15) 

where ,;t i is the area percentage of the ith domain in the 

f" R 

Fig. 2. A heterogeneous deformation is divided into several approxi- 
mately homogeneous domains. For each domain, we have: f~,Wi • dS 
= fcY " dx where Cl = ABEA,  C2 = BCFEB, etc. In the process of 
deformation there are continual vorticity exchange between domains 

leading to non-steady flow in different domains. 

flow area and E 2i = 1. Equation (15) specifies the way in 
which the bulk vorticity determined by the imposed 
boundary conditions of the flow is distributed in differ- 
ent domains. Several specific situations are now 
reviewed to demonstrate the effect of vorticity distri- 
bution. 

Drag fold development in a shear zone 

In a shear zone undergoing simple shear where a 
competent  layer is parallel to the flow plane as shown in 
Fig. 3, before the initiation of folding, the bulk vorticity 
is distributed such that the competent  layer takes nearly 
zero vorticity while the vorticity of the incompetent 
layers is larger than the bulk vorticity, since according to 
equation (14), we have: 

Wb(S~ + So) = WiSi 

Wi = (1 + R)Wb, (16) 

where R is the ratio of the area of the competent layer Sc 
to that of the incompetent layer Si (hereafter R is 
referred to as the heterogeneity factor in this paper).  
There is a very strong vorticity gradient across the 
competency contrast boundary.  As flow advances, there 
is a strong tendency for the competent  layers to take up 
some of the vorticity by spinning as suggested by Lister 
& Williams (1983). 

Imagining some variation in strength properties 
causes the area lA to spin, the adjacent areas l B and I c 
will be forced to rotate in the opposite sense (Fig. 3), we 
have: 

l A sin 0A = lB sin 0B + lc sin Oc. 

Differentiating (17), after arrangement, we have: 

d 0 A  -- IBCOS 0B d0B t- lC COS 0 C dOc 
dt IACOS 0A dt lA COS 0 A dt 

(0A ~ 90 °) 

^ d0B d0c 
lB cos 0 B T + Ic cos 0c T = 0 

(17) 

(0A = 90°). (18) 

The incremental vorticity of the competent  layer is: 
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AW= 

d0 A d0 B d0c 
21A -~ -  -- 2/B ~ -  - 2lc dt 

l A + I B + I c 

when 0 A 7 ~ 90 °, after arrangement: 

d0 B . /cos 0 B 
dt "~c-~s ~ 

zXW=2 

1 ) +  d0c " /c°s  --~- lc~c---~s b-TA 0c 1) 

(19a) 

IA + IB + lc 

(0A ¢ 90°). (19b) 

When 0 A < 90 °, dOB/dt and dOc/dt > 0, and since 0A > 
0B or Üc, from (19b) AW > 0. When 0A >-- 90 °, areas lB 
and lc will rotate in the same sense as lA, i.e. dOB/dt and 
dOc/dt < 0, from (19a), still AW > 0. Therefore (19) is 
always positive. This indicates that the competent layer, 
by initiating folding, takes on some of the vorticity and 
the vorticity of the incompetent matrix decreases cor- 
respondingly. The vorticity gradient across the 
competent-incompetent boundary is reduced. As flow 
develops, the distribution of vorticity changes as is 
indicated in equation (19) since 0 changes with time. 

Rotation o f  rigid inclusions in ductile matrix 

The angular velocity (o9) of a rigid elliptical inclusion 
with an aspect ratio N in a zone of simultaneous combi- 
nation of simple shear @) and pure shear (~) is given by 
Ghosh & Ramberg (1976, equation 3) 

o9 = 1/(N 2 + 1)[~(N 2 cos 2 q} + sin2q~) 

+ k(N 2 - 1) sin 24~], (20) 

where ~O is the instantaneous angle of the long axis of the 
inclusion with respect to the flow plane. 

The variation of co as ~0 changes is shown in figs. 2 and 
3 of Ghosh & Ramberg (1976). For any N, 9 and k the 
average magnitude of o9 over 0--180 ° is always 0.59. The 
average vorticity of the inclusions equals the bulk vor- 
ticity. However, in the process of rotation the vorticity 
of the inclusion varies. This means that there is continual 
redistribution of vorticity between the inclusions and the 
matrix. 

In the study of garnet rotation by Williams & Schone- 
veld (1981), perfect coupling requires that the angular 
velocity of garnets equals the shear strain rate. In such a 
case, 

Wb(Sg + Sm) = %Sg  + WmSm, (21) 

where Wb is the bulk vorticity (Wb = ?)); Wg is the 
vorticity (spin) of garnet (Wg = 29); Wm, Sin, Sg are the 
vorticity of matrix, area of matrix and area of garnet, 
respectively. Therefore: 

W m = ~,(1 - Sg/Sm) < ~. (22) 

It is readily seen that if garnets rotate in the suggested 
model, then the matrix will have less vorticity (Wm < ~'). 
However if discontinuous slip takes place along the 
garnet-matrix contact, this slip can take up large 

amounts of vorticity flux and serves as a means to 
accommodate vorticity difference. 

Shear zones cutting layers with competency heterogeneity 

Consider a shear zone cutting layers with competency 
heterogeneity as in Fig. 4, for example, a thrust or 
extensional fault cutting a sedimentary sequence. Sup- 
pose the layers are at an arbitary angle q~ with respect to 
x2 (shear zone normal). As has been observed by Lister 
& Williams (1983) the competent  layer tends to spin and 
keep the local flow as coaxial as possible, whereas the 
incompetent layer will undergo non-coaxial flow by 
strain compatibility. If the boundary movement is sim- 
ple shear with a strain rate ~ then the velocity field is: 

v 1 = d x j d t  -= ~x 2 

v 2 = dx2/dt = 0 (23) 

tanq~ = Xl/X2. (24) 

Differentiating (24) and incorporating (23) gives: 

ddp/dt = ~ cos 2 ~b. 

Therefore the vorticity of the competent layer Wc is 

wc = 2~ cos 2 q~. (25) 

According to equation (14) the average vorticity of the 
incompetent layer W i and the areas of competent layer 
and incompetent matrix S c and Si are related as: 

~ ( S  i q- Sc) = 2~  c o s  2 (pS c --{- WiS i 

or 

W i = ~(1 - R cos 2~), (26) 

where R is the local heterogeneity factor. 
Obviously, if Sc << Si, Wi = ~. 
The deformation history of incompetent layer and the 

non-coaxiality of the flow is investigated later in the 
paper. 

Discontinuous slip planes 

Stokes's curl theorem can be used to extend the 
concept of vorticity to situations where discontinuities 

Fig. 4. Shear zone with rheologically heterogeneous layers at an 
arbitary angle ~ with respect to the shear zone boundary normal. A 
and B are incompetent and competent layers, respectively. B domain 
tries to keep the local flow as coaxial as possible whereas A domain 
undergoes non-coaxial flow (see Lister & Williams 1983 for dis- 
cussion). Because of vorticity distribution and partitioning, the defor- 
mation path of domain A is a non-steady spinning non-coaxial flow; 
super-simple shear (W~, > 1) occurs and if R > 0.41, reverse sense of 

shear occurs. See text for detail. 
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Fig. 5. Slip on discontinuous planes such as foliations or competency 
contrast boundaries like those between garnet and matrix can accom- 
modate large amounts of vorticity flux. Here the bulk vorticity deter- 
mined by shear zone boundary movement is ~. The vorticity of the rock 
between slip planes is 2~ cos ~0, whereas the vorticity of garnet, when 
perfectly coupling (see Williams & Schoneveld 1981) is 2)5. The 
vorticity differences are balanced by slip on discontinuous planes. 
Discontinuous slip can contribute to local flow non-steadiness. See 

text for detail. 

develop. For a discontinuous plane initiated in a shear 
zone (Fig. 5), slip on the plane would contribute a 
uniform translation component to the velocity field. 
Suppose the relative velocity of displacement of the 
plane is v. For the loop C (abcd) as in Fig. 5, we have: 

I c u r l v d S = ~  vdx = v ,  (27) 
s c w 

where w is the width of the loop. Obviously this vorticity 
is accommodated by the movement on the plane, since 
by narrowing the loop, the vorticity magnitude becomes 
larger, until when w ~ 0, W---> ~. If the slip planes are 
penetrative as C or C' planes in shear zones, the average 
vorticity accommodated by them would be 

W= = 1/w 2 vi = r a i d '  (28) 

where W~ is the average slip plane accommodated vorti- 
city, v~ is the average slip velocity on slip planes and d is 
average spacing of slip planes. 

Therefore if slip on discontinuous planes is con- 
sidered, the bulk vorticity is decomposed into W~o, 
(vorticity of continuous domains between slip planes) 
and W= (vorticity due to slip on discontinuous planes), 
we have 

W = W= + W¢on. (29) 

If W~ is significant, Wco, can be greatly different from 
the bulk vorticity. It is readily seen that discontinuous 
slip can contribute to the deviation of local flow from 
bulk flow because it makes great vorticity difference 
between adjacent domains possible. 

A QUANTITATIVE EXAMPLE OF VORTICITY 
PARTITIONING 

established (Fig. 6) with x 1 parallel to the bulk shear 
zone boundary, x~ normal to the shear zone. AoBoCoD0, 
EoFoGoH0, ABCD and EFGH are segments of com- 
petent layers which exhibit spinning coaxial defor- 
mation. AoDoGoFo, ADGF are segments of 
incompetent layers. Figure 6(a) corresponds to the 0- 
configuration (@ = 0) and Fig. 6(b) corresponds to the @- 
configuration (@ ¢ 0) M0,NoQo,Ro and M,N,Q,R are 
mid-points of AoBo, CoDo, EoF0, GoHo, etc. If the two 
competent layers enclosing the incompetent area are 
symmetrical then the origin of the frame is chosen to be 
at the mid-point of A0F 0 as in Fig. 6(b), otherwise the 
origin is placed where QM intersects x~. 

If the reference configuration is the 0-configuration, 
the deformation equations at any time t are (see Appen- 
dix B): 

x~ = [1 + R(2 + R) sin 2 @]1/2 cosflx 0 + tan @x2 ° 

x2 = [1 + R(2 + R) sin 2 @]1/2 sin fix ° + x°2, (30) 

where fl = tan -1 [R sin @ cos @/(1 + R sin 2 @)], @ is the 
angle of the competent layers with respect to the shear 
zone normal at the deformed state (@-configuration) and 
is a function of t. R is the local heterogeneity factor. 

The deformation gradient tensor of the incompetent 
layer F which is a function of t is thus: 

F(/) = [A cosfl tan q~l (31) 
L A sin fl 1 ' 

where A = [1+R(2 + R) sin 2 ~]1/2. 
If the reference configuration is defined when the 
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At any instant, the distributed vorticity in a particular 
domain is partitioned into shear-induced vorticity and 
spin. In this section, the example shown in Fig. 4 is used 
to show how the distributed vorticity can be partitioned. 

The vorticity distributed in the competent layer is 
accommodated by spin, so the problem is how vorticity 
partitioning takes place in the incompetent layer. In 
order to examine this problem a reference frame is 

r I:l 

(b) 

Fig. 6. External reference frame fixed to the boundary of the shear 
zone for the derivation of the deformation tensor of the incompetent 

layers. (a) 0-configuration; (b) q)-configuration. 
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competent layers are at an initial angle q5 o with respect to 
shear zone normal (~0-configuration), the deformation 
tensor F¢o is (see Appendix B): 

It 1I 1 tan o  F~o(t) = cos 3 tan 
sin fl 1 - A o sin flo A o cos/~oJ' 

(32) 

where A 0 = [1 + R(2 + R) sin e q~0] 1/2, fl0 = t an - t  [R sin 
~bo cos q~d(1 + R sin 2 q~0)]. 

From equation (3), the velocity gradient tensor L(t) is: 

L ( t )  = F~o(t)F~,) 

[ cos  ,sin   1[ tan l 1 (33) 
s i n 3 + A c o s 3 / 3  0 - A s i n f l  Acos/3J '  

where " means differentiation with respect to t. 
The left Cauchy-Green tensor B (for definition, the 

reader  is referred to Truesdell 1965) is: 

B = F~0F~0. (34) 

From equation (33), the angle of the principal instan- 
taneous stretching axis with respect to xl (0i), principal 
instantaneous stretching rates (sl, se) and the instan- 
taneous vorticity can be calculated (see Truesdell 1965, 
Means et al. 1980, Passchier 1986). From equation (34), 
finite principal stretches can be calculated at different t 
for given R, $0. The spin of the instantaneous stretching 
axis is: 

2 d0i d0i d9  
s p i n = -  ~ = - 2 d 9  dt 

= - 2  cos 2 9 d'zi "~ - 2  cos 2 A0i 
d9  9 S-~9" 

The negative sign represents that the decrease of 0i 
corresponds to the sympathetic sense of spin. The SIV 
component  of the vorticity is thus: 

d0i _ S I V = W  i - s p i n = 2 c o s  2 9 ~  R c o s 2 9 + 1 .  

Using SIV and principal instantaneous stretching rates, 
we can obtain the internal kinematic vorticity number 
(W~) (equation 3). 

The condition for SIV to be always positive is: 

SlVlw= o = 2 d0---A - R + 1 - 0. 
d9 I~=0 

This is satisfied when R -< 0.41, which means ifR -< 0.41 
reverse shear will not occur. 

The results of the above presented calculation are 
shown in Figs. 7-12. 

DISCUSSION AND GEOLOGICAL 
IMPLICATIONS 

Vorticity distribution and partitioning: the bridge to con- 
nect different scale structures 

In understanding the development  of structures of an 
area from the point of view of its kinematics, the geolo- 

(deg . )  
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Fig. 7. Variation of the orientation of the principal instantaneous 
stretching axis (0i) vs the instantaneous orientation of the layers ($) 
(the curves are symmetric about the vertical axis, so the variation from 
-90 ° to 0 ° is omitted in this and subsequent figures). The instantaneous 

stretching axis is not fixed unless R = 0. 

gist is faced with integrating observations on different 
scales. As pointed out by Hobbs et al. (1976), the most 
important  difference between different scales is not 
simply the size of the area observed but the way in which 
the observation is made.  From smaller scale to larger 
scale, interpretat ion is always involved. 

The principle of bulk vorticity determination shows 
that the bulk vorticity does not exert any constraints on 
local flow. In the quantitative model,  although the 
imposed boundary  displacement is a constant simple 
shear (bulk flow), the complexity of deformation path of 
the incompetent  layer (local flow) is explicitly demon- 

wi 
2 ..... 

1.5 - 

0.5 

o 
o l 0 20 30 40 50 60 70 80 90 

t,p (deg )  

Fig. 8. Variation of the distributed vorticity in the incompetent layer 
(Wi) vs $ for different R (the bulk shear strain rate is set at 1, otherwise 

the vertical axis should be Wi/~). 
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Fig. 9. Variation of the spin component  of  W i vs ~ for different R. For 
different ~, spin may be sympathetic (>0)  or antithetic (<0) .  
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Fig. 11. Variation of the internal kinematic  vorticity number  (W~) vs 
q~ for different R. There  is always a range around _+45 ° where W{ > 1. 

W~ is m a x i m u m  at q~ = _+45 °. 

strated in Figs. 7-12. It can undergo reverse (SIV < 0) 
shear (if the local R > 0.41), forward shear (SIV > 0) or 
instantaneously coaxial (SIV = 0) depending on the 
instantaneous angle q~. The larger the magnitude of R, 
the wider the range in which reverse shear can occur 
(Fig. 10). As q~ approaches 90 °, the flow approaches 
simple shear (Figs. 7-12). Therefore it can be concluded 
that the more heterogeneous the rocks, the more likely 
kinematically inconsistent structures will develop; 
whereas the higher the finite strain, the more likely we 
will see kinematically consistent structures. 

In the quantitative model, the instantaneous stretch- 

SIV 

2 

1.0 
1.5 

1 = 

0.5 

0 

-0.5 

-1 

0 10 20 30 40 50 60 70 80 90 

(dog.) 

Fig. 10. Variation of the SIV componen t  of W i VS ~ for different R. If 
R -< 0.41 then SIV is always positive. W h e n  R > 0.41, reverse sense of 
shear  occurs and it is m a x i m u m  at ~ = 0. SIV reaches its max imum 
forward shear  at q~ = +45 ° then  af ter  a decrease reaches its max imum 

again at ~ = +90 °. 

ing axis keeps spinning sympathetically or antithetically 
depending on the instantaneous q~ (Fig. 9). The flow is 
obviously non-steady, spinning and non-coaxial. In 
natural shear zones, R may vary from domain to domain 
and with time due to strain softening or hardening, 
development of fabrics, growth of new minerals, change 
of thermodynamic conditions, etc. One can instantly 
imagine how complex the structural evolution in nature 
can be. Even the finite strain, which is generally con- 
sidered to be relatively easy to deal with, is dependent 
on the deformation history: the finite strain of the 
incompetent layer (local finite strain eLF) is a compli- 
cated function of the initial angle q~0, local rheological 
heterogeneity factor R and the bulk finite strain (eBV) 
which can be expressed as: 

E L F  = f(~00, R, eBF). (35) 

Even from strain measurement,  if we obtain eLF , in 
order to get eBFWe must know the original configuration 
¢0 and the rheological heterogeneity factor R, which 
may be a function of many factors operating in the 
history of the deformation. Unless we know or assume 
q~0 and R, no inference of eBF from eLF can be reasonably 
made. It follows from the above that there are no simple 
and unique relationships between bulk and local strains, 
finite and instantaneous strains. To establish the bulk 
kinematics from the combination of local observations, 
understanding the distribution and partitioning of the 
bulk vorticity is a necessity. The assumption that simple 
deformation mechanisms such as simple shear are 
invoked for all scales of rock deformation (e.g. Mattauer 
1975, 1986, Bird 1978, Brunel 1986) cannot be justified. 

The non-steadiness of natural deformations 

All situations of vorticity distribution studied indicate 
that the distribution is a function of time. Since the bulk 
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Fig. 12. Plot of logarithm of the ratio of the maximum to minimum 
principal stretches against time for the deformation history of the 
incompetent  domain for different ~0 and local heterogeneity factor R. 
R = 0 corresponds to bulk progressive simple shear. The bulk shear 

14 1 strain rate is set at 10- s -  . Although W~ > 1 occurs for any R, the 
finite strain pulsates only in the event ~ = - 8 0  ° (a). In this case, the 
oscillation occurs in the range of  ~ as indicated by arrows in which W~ 
may vary significantly (compare to Fig. 11). No correspondence exists 

between the magnitude of W~, and finite strain oscillation. 
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vorticity and its change with time are independently 
determined by the boundary movement, it is unlikely 
that the bulk vorticity will change in such a way as to 
keep the distributed vorticity in each domain steady. It 
follows that the deformation path in different domains 
is, in general, time-dependent, so long as rheological 
heterogeneity exists. Therefore heterogeneous flow is 
also non-steady. Homogeneous and/or steady flows will 
only occur where strain softening is so complete that 
rheological heterogeneity vanishes. This is only possible 
locally and over relatively short periods of time where 
vorticity redistribution can be neglected. 

Successive development of folds in ductile shear zones 
has been aptly interpreted as a result of local flow field 
perturbance caused by 'islands' of rigid or less deformed 
units as porphyroclasts, pebbles or boudins (Hudleston 
1977, 1989, Bell 1978, Cobbold & Quinquis 1980), 
variation in strength properties (Lister & Williams 1983) 
or mechanical heterogeneity induced instability (Ghosh 
& Sengupta 1984, 1987). Platt (1983) points out that 
there are variations of vorticity partitioning along the 
foliation which may offer an alternative interpretation: 
an increase in shear-induced vorticity would cause back- 
ward spins which do not amplify, whereas a decrease in 
SIV would cause forward spins which amplify. How- 
ever, when we look into the reasons for such variations 
of vorticity partitioning, we have to return to local flow 
field perturbances caused by material heterogeneity. 
Even when the material is more or less homogeneous, 
differences of strain softening and/or hardening are 
always expected which could induce rheological hetero- 
geneity and hence local flow non-steadiness. 

Shortened or folded boudins in nature have been 
interpreted either as the result of area change during 
progressive non-coaxial deformation at near simple 
shear flow conditions (e.g. Von Burns & Talbot 1986, 
Passchier 1990) or as due to two separate phases of 
deformation with different oriented principal shortening 
axis, each with 0 -< WE -< 1 (Sengupta 1983, Passchier 
1990). An alternative interpretation would be that 
boudinage results in local heterogeneity and leads to 
local non-steady flow. 

Even in ductile regimes, discontinuous slip may occur 
at least transiently (Sibson 1977) on planes like foliations 
(e.g. Williams 1977). The present study shows that these 
slips can significantly contribute to local flow heterogen- 
eity and non-steadiness because they make great vorti- 
city differences between adjacent domains possible. 

The internal kinematic vorticity number: not a criterion 
of  finite strain oscillation 

Sub- and super-simple shear have also been called 
non-pulsating and pulsating histories (Means et al. 
1980). In the present model however, super-simple 
shear (W~, > 1) occurs for any R (Fig. 11), but the finite 
strain does not pulsate except when q~0 = -80° (Fig. 12). 
Even in this case, the finite strain oscillation does not 
correspond to W~, > 1. Instead, W~, varies significantly in 
the period of oscillation (compare Fig. 12a with Fig. 11). 

Owing to non-steadiness, the finite strain may pulsate 
even for a coaxial flow (Wk' = 0). An obvious example is 
one with the instantaneous velocity field as: 

vl = cos t xl, v 2 = - c o s  t x2. (36) 

The deformation gradient tensor is obviously: 

F(t) = [ exp (sin t) 0 1 • (37) 
0 exp ( -s in  t) 

This flow is coaxial but the finite strain pulsates with a 
periodicity ~. It is therefore clear that, for non-steady 
flow, Wk' can only specify the non-coaxility of the flow 
but not the oscillation of finite strain. 
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APPENDIX A 
DERIVATION OF EQUATION (12) 

Differentiating (11 ) gives: 

1 d 
d W b - - s ( ~ c V d X - O l n S  at ,ycVdX)'  (A1) 

where the material boundary C and the area of the deformation S are 
both functions of time. 

According to Ottino (1989, equat ion 2.10.1, p. 37): 

da~ vdx=t~ DVdx+~ vLdx (A2) 
dt Yc  Y c  Dt Yc  

since: 

therefore: 

~ c  vL dx = f c  v dv =- 0 (A3) 

dW b 1 t~ {Dv 
dt = S Y c  k ~--~ 

If Dv/Dt = 0 along C, (A4) becomes: 

d W b _  a l n S l ~  vdx.  
dt at S c 

Incorporat ing (11), we have: 

dW b _ O I n S  Wb" 
dt Ot 

OlnS ) 
Ot v dx. (A4) 

(AS) 

(A6) 

SoMng (A6) gives: 

WbS = constant.  (A7) 

APPENDIX B 
DERIVATION OF THE DEFORMATION 

GRADIENT TENSOR F 

The establ ishment  of the reference frame for the derivation of the 
deformation gradient  tensor  is described in the text (Figs. 6a & b). 
(I) The reference configuration is when the initial angle is 0 (O- 
configuration) 

A D  = MN = AoD o s e c ~  = b sec  

b 2 = 2AM - MN 

A M  = ½b cos q~ 

O A  2 = A M  2 + OM 2 - 2AM • OM cos 

= a 2 + (ab + ¼b 2) sin2~ 

OK2/(X0) 2 = OAE/a 2 = 1 + (b/a + ¼b2/a 2) sin 2 

since the local heterogenei ty  factor R = b2/(2ab) = ½b/a 
therefore:  

OK2I(x°) 2 = 1 + R(2 + R) sin 2 

OL2/(x°) 2 = Kp2/(x°) 2 = sec 2 

therefore:  

x I = OK cos fl + KP sin q~ 

= [1 + R(2 + R) sin 2 ~] ln  cosflx o + tan gpx ° 

x 2 = OK sin fl + KP cos ~0 

= [1 + R(2 + R)sin2ep]lnsinflx° + x ° 

where tanf l  = R sin q~ cos q~/(1 + R sin2 q~); tan q~ = y 
therefore the deformat ion gradient  tensor  F(t) is: 

F(t)=[Ac°sfl[Asinfl t a lq° ] '  

where A = [1 + R(2 + R) sin2 q~] 1/2. 
(II) The reference configuration is when the initial angle is Oo 
(q~o-configuration) 

The t ransformat ion from ~0-configuration (x °, ~ )  to 0- 
configuration (x~, x-~) is: 

Ao cos ¢~oJLx~J' 

where Ao = [1 + R(2 + R) sin 2 ~]1r2; tanfl0 = R sin ~ cos ~ / ( 1  + R sin 2 

q~0)- 
The t ransformation from O-configuration to ~p-eonfiguration is: 

L A sin fl 1 J Lxlj 

Therefore  the t ransformat ion from ~-conf igura t ion  to q~-con- 
figuration is: 

~o][ 1 [;12] = [A cos fl tan - t a n  q~][X°l] 
1   Aos'n o Ao os o  X°  

thus the deformation gradient  tensor F(t) is: 

[A cosfl  tan ~o] [ 1 - t a n  rpo ]" 
F~°° ( t )= [As in f l  1 J [ - A o s i n f l o  Aocosflo j 


